TRANSFUSION-

43 | TORQUE TENO VIRUS (TTV) COMPLEX

This fact sheet is archived and will not be further updated without further evidence that the pathogen poses a threat in the context of transfusion medicine.

43.1 | Disease agent

• Torque teno virus (TTV) including SEN virus (SENV)

43.2 | Disease agent characteristics

- Family: *Anelloviridae*; Genus: *Alphatorquevirus*. There are more than 30 species in this complex recognized.
- Virion morphology and size: Nonenveloped, nucleocapsid of unknown symmetry, 30–50 nm in diameter.
- Nucleic acid: Circular, negative-sense, single-stranded DNA, \sim 3.6–3.8 kb in length
- Physicochemical properties: Not well-described.

43.3 | Disease name

No associated disease; human infection with these agents is nearly ubiquitous and despite early associations with syndromes ranging from asthma to hepatitis to pregnancy-associated morbidity, no disease associations have been confirmed for TTV or other *Anelloviridae*.

43.4 | Priority level

- Scientific/Epidemiologic evidence regarding blood safety: Absent; transmission documented, but no disease associated despite extensive studies.
- Public perception and/or regulatory concern regarding blood safety: Absent
- Public concern regarding disease agent: Absent

43.5 | Background

• In 1997, Japanese investigators discovered TTV using representational difference analysis from a blood sample of a patient with posttransfusion non-A to -E hepatitis.

• The name torque teno virus was selected by a working group on the circoviruses after torques (necklace) and tenuis/teno (thin), thereby preserving the widely used term, TTV, which originally employed the initials of the patient (T.T.).

KATZ ET AL.

- Phylogenetic analysis showed TTV to represent the prototype virus for a vast group of heterogeneous agents unrelated to any known human or animal hep-atitis viruses.
- SENV was discovered in Italy by using degenerate primers from TTV. Although originally thought to be novel, it was subsequently shown to be a member of a genetically diverse group of viruses in the TT complex.
- Despite their source from hepatitis cases, subsequent studies showed that these viruses are ubiquitous (prevalence rates up to 90% in adults) and that neither agent is a cause of human hepatitis.
- Anellovirus concentrations are under evaluation as markers for immune function after solid organ and hematopoietic stem cell transplantation.

43.6 Common human exposure routes

Parenteral transmission is the major route of transmission, but the fecal-oral route is similarly suspected to contribute to spread of the virus.

• Sexual transmission probable.

43.7 | Likelihood of secondary transmission

• Probably moderate, but the extent of secondary spread is not well-defined.

43.8 | At-risk populations

- Blood component recipients
- Injection-drug users
- Household contacts
- Sexual partners

43.9 | Vector and reservoir involved

• Humans

43.10 | Blood phase

• Persistent viremia is common.

43.11 | Survival/persistence in blood products

· Survives refrigeration and freezing.

43.12 | Transmission by blood transfusion

· Well documented in prospective studies

43.13 | Cases/frequency in population

- The prevalence of viremia ranged from 2% to 12% in blood donors; however, using primers for highly conserved sequences, TTV DNA has been detected in >90% of some populations.
- Prevalence of TTV ranges from 40% to 70% in hemophiliacs, dialysis patients and injection-drug users, but could be higher with different primers.

43.14 | Incubation period

• In nonhuman primates, viremia is detected 4–7 days after intravenous injection and 7–10 days after oral inoculation.

43.15 | Likelihood of clinical disease

• SENV and TTV were originally suspected to be etiological agents for acute and chronic non-A to -E hepatitis, hepatitis-associated aplastic anemia, acute liver failure, or cryptogenic cirrhosis, but these associations have been excluded.

43.16 | Primary disease symptoms

• No virus-specific symptoms have been identified.

43.17 | Severity of clinical disease

• No clinical disease association has yet been established; thus, any clinical relevance of the TT complex is speculative.

43.18 | Mortality

• None

43.19 | Chronic carriage

Asymptomatic carrier state frequent

43.20 | Treatment available/efficacious

- No treatment required.
- Interferon treatment has been associated with viral clearance during treatment of coinfections with other hepatitis viruses.

43.21 | Agent-specific screening question(s)

- No specific question is in use.
- Not indicated because transfusion-transmitted dis-ease has not been demonstrated.
- No sensitive or specific question is feasible.

43.22 | Laboratory test(s) available

- No FDA-licensed blood donor screening test exists.
- Virus detected by NAT.

43.23 | Currently recommended donor deferral period

- No FDA Guidance and/or AABB Standard exist.
- There is no indication for deferral in the absence of disease associations.

43.24 | Impact on blood availability

- Agent-specific screening question(s): Not applicable
- Laboratory test(s) available: Not applicable.

43.25 | Impact on blood safety

- Agent-specific screening question(s): Not applicable
- Laboratory test(s) available: Not applicable.

S188 TRANSFUSION-

43.26 | Leukoreduction efficacy

• Unknown but unlikely to be effective against a noncell-associated virus.

43.27 | Pathogen reduction efficacy for plasma derivatives

- Not inactivated by solvent-detergent.
- No data on other inactivation procedures, but some similarities to porcine circovirus 2 and chicken anemia virus exist, which demonstrate extreme resistance to pasteurization or prolonged dry heat methods similar to those proven effective for other pathogens in plasma products.

43.28 | Other prevention measures

• None

SUGGESTED READING

- 1. Alter HJ. Emerging, re-emerging and submerging infectious threats to the blood supply. Vox Sang. 2004;87(Suppl 2): S56-61.
- 2. Focosi D, Spezia PG, Macera L, Salvadori S, Navarro D, Lanza M, et al. Assessment of prevalence and load of torquetenovirus viraemia in a large cohort of healthy blood donors. Clin Microbiol Infect. 2020;26(10):1406–10.
- Hino S, Miyata H. Torque teno virus (TTV): current status. Rev Med Virol. 2007;17:45–57.

- Irshad M, Joshi YK, Sharma Y, Dhar I. Transfusion transmitted virus: a review on its molecular characteristics and role in medicine. World J Gastroenterol. 2006;12:5122–34.
- Mouton W, Conrad A, Bal A, Boccard M, Malcus C, Ducastelle-Lepretre S, et al. Torque teno virus viral load as a marker of immune function in allogeneic haematopoietic stem cell transplantation recipients. Viruses. 2020;12(11): 1292.
- Mushahwar IK, Erker JC, Muerhoff AS, Leary TP, Simons JN, Birkenmeyer LG, et al. Molecular and biophysical characterization of TT virus: evidence for a new virus family infecting humans. Proc Natl Acad Sci USA. 1999;96:3177–82.
- Nishizawa T, Okamoto H, Konishi K, Yoshizawa H, Miyakawa Y, Mayumi M. A novel DNA virus (TTV) associated with elevated transaminase levels in post-transfusion hepatitis of unknown etiology. Biochem Biophys Res Commun. 1997; 241:92–7.
- 8. Okamoto H, Akahane Y, Ukata M, Fukuda M, Tsuda F, Miyakawa Y, et al. Fecal excretion of a nonenveloped DNA virus (TTV) associated with posttransfusion non-A-G hepatitis. J Med Virol. 1998;56:128–32.
- 9. Tanaka Y, Primi D, Wang RY, Umemura T, Yeo AE, Mizokami M, et al. Genomic and molecular evolutionary analysis of a newly identified infectious agent (SEN Virus) and its relationship to the TT Virus family. J Infect Dis. 2001;183: 359–67.
- Umemura T, Yeo AE, Sottini A, Moratto D, Tanaka Y, Wang RY, et al. SEN virus infection and its relationship to transfusion associated hepatitis. Hepatology. 2001;33: 1303–11.
 - Welch J, Bienek C, Gomperts E, Simmonds P. Resistance of porcine circovirus and chicken anemia virus to virus inactivation procedures used for blood products. Transfusion. 2006;46: 1951–8.